In Search of Cracks in Albert Einstein’s Theory of Gravity

 


During a solar eclipse in 1919, Arthur Eddington observed light bending around the sun just as predicted by general relativity, Albert Einstein’s new theory of gravity. Since then, general relativity, which says that massive objects like stars warp the fabric of space-time around them, has passed increasingly precise tests. A year rarely goes by without a new experiment or observation confirming Einstein’s theory. But there’s a hitch.

 

Invisible substances known as dark matter and dark energy seem to make up some 95% of the content of the universe. The working assumption is that dark matter consists of nonluminous elementary particles, and that dark energy is the energy of space itself. But it’s also possible that they are illusions that appear because gravity works differently from how Einstein thought about it. “We’re invoking these mysterious things,” said the cosmologist Celia Escamilla-Rivera.“I am strongly convinced that alternative theories of gravity are needed.”

 

Escamilla-Rivera is searching for another, more complete theory. A bewildering array of alternatives to general relativity have been put forward over time, from “teleparallel gravity” to “complex quintessence” and “negative-mass cosmology,” but they long seemed like theoretical fancies. With cosmologists unable to create experiments that can distinguish these theories from general relativity, the ideas have gathered dust.

 

According to Escamilla-Rivera, that’s beginning to change in this new era of precision cosmology, a field she is pioneering in her home country of Mexico. Precision cosmology combines large and diverse data sets with new statistical methods, machine learning and supercomputers. “Thanks to this data you can open a door and classify all these theories and say which ones work and which ones don’t,” she said.

 

By scouring the early universe and the extreme environments of black holes, Escamilla-Rivera thinks we can find cracks in general relativity, which will make way for something else. This isn’t conventional wisdom among cosmologists, but Escamilla-Rivera’s path to becoming a cosmologist hasn’t been conventional either.

 

Escamilla-Rivera grew up in Ciudad del Carmen, a city on a small island in southern Mexico. She remembers walking along the beach at night under a full moon at age 4, wondering: Why is the moon very round? And why does it only come out at night? “I thought I needed to become an astronaut,” she said.

 

Years later, watching one of her university professors compute the age of the universe directly from Einstein’s equations, she switched her focus to cosmology. “People were like: ‘Why do you want to be a cosmologist? These are careers for people in the United States,’” she said. “It was seen as very weird.”

 

Escamilla-Rivera completed her doctorate in Europe and the United Kingdom; then, at 29, she was invited back to Mexico to run the theoretical physics department of the Mesoamerican Center for Theoretical Physics. A few years later, she became the first woman to hold a research position in the department of gravitation and field theory at the National Autonomous University of Mexico (UNAM) — as the head of the department.

 

We spoke for four hours over Zoom. From her office at UNAM in Mexico City, Escamilla-Rivera exuded confidence and enthusiasm, not only about the potential of precision cosmology to overturn Einstein, but also about new prospects for cosmologists in Mexico. The interview has been condensed and edited for clarity.

 

The problem is that general relativity is not general enough. If you want to explain dark energy, this invisible energy that seems to be accelerating the universe’s expansion, you need an extra component in the equation, called the cosmological constant. This extra component doesn’t exist naturally in general relativity; you need to add it by hand.

 

Is there a theory that naturally can give you dark energy without invoking mysterious things? That’s why I’m working on these extended or modified theories of gravity.

 

General relativity explains a lot about nature, but it doesn’t explain what happened at the Big Bang, or what happens inside black holes. The singularity of a black hole is mathematically very similar to the Big Bang singularity — it’s a point where all the known laws of physics break. A big question is, if we modify or extend general relativity, maybe we can explain this bizarre point that breaks everything.

 

General relativity also doesn’t explain the future of the universe. There are interesting theories that say the universe is going to collapse again into another Big Bang, called the Big Crunch universe. But we don’t know because general relativity is incomplete. If we find a complete theory, we could get answers to these kinds of questions.


Reference:

Quanta Magazine

Reactions

Post a Comment

0 Comments