Flying clocks around the world in opposite directions proved Einstein was right

 


In 1905, our conception of the Universe changed forever when Einstein put forth his special theory of relativity. Prior to Einstein, scientists were able to describe every “point” in the Universe with the use of just four coordinates: three spatial positions for each of the three dimensions, plus a time to indicate which moment any particular event occurred. All of this changed when Einstein had the fundamental realization that every single observer in the Universe, dependent on their motion and location, each had a unique perspective on where and when every event in the Universe would have occurred.

 

Whenever one observer moves through the Universe relative to another, the observer-in-motion will experience time dilation: where their clocks run slower relative to the observer-at-rest. Based on this, Einstein suggested that we could make use of two clocks to put this to the test: one at the equator, which speeds around the Earth at approximately 1670 km/hr (1038 mph), and one at the Earth’s poles, which is at rest as the Earth rotates about its axis.

 

In this regard, however, Einstein was wrong: both clocks run at exactly the same rate relative to one another. It wasn’t until 1971 that a proper test could be conducted, and it required a lot more than special relativity to make it so.

 

Back when Einstein first put forth his special theory of relativity, there was a missing element: it didn’t incorporate gravitation into the mix. He had no idea that proximity to a large gravitational mass could alter the passage of time as well. Owing to the planet’s rotation and the attractive gravitational force of every particle that makes up the Earth, our planet bulges at the equator and gets compressed at the poles. As a result, the Earth’s gravitational pull at the poles is slightly stronger — by about 0.4% — than it is at the equator.

 

As it turns out, the amount of time dilation due to a point on the equator zipping around the Earth is exactly cancelled by the additional amount of gravitational time dilation that results from the difference in gravity at the Earth’s poles versus the equator. Being deeper in a gravitational field, which the poles are, causes your clock to tick by more slowly, just as moving faster relative to a stationary observer does.

 

If you want to account for the rate at which the passage of time will appear to occur for each and every observer, both the relative motion effects of special relativity and also the relative effects of gravity — i.e., the relative curvature of spacetime between multiple observers — must be taken into account.

 

Time dilation was one of the few relativistic phenomena that was actually predicted even before Einstein put forth the ideas of special and general relativity, as the consequences of motion close to the speed of light for distances (length contraction) was worked out in the 19th century by George FitzGerald and Hendrik Lorentz. If distances changed, then in order to maintain the proper working of physics that we knew for electrons in atoms (as shown by Joseph Larmor in 1897) or for clocks in general (as shown by Emil Cohn in 1904), that the same factor — the Lorentz factor (γ) — must factor into time equations as well.

 

Although this was very difficult to measure initially, our growing understanding of the subatomic world soon made it possible. In the 1930s, the muon, a subatomic particle that’s the heavier, unstable cousin of the electron, was discovered. With a mean lifetime of just 2.2 microseconds, muons that are produced from cosmic ray collisions in Earth’s upper atmosphere should all decay within just hundreds of meters. And yet, if you hold out your hand, about one such muon passes through it with every second, indicating that they journeyed somewhere around 100 kilometers: a feat that’s physically impossible without time dilation. As soon as we developed the technology of cloud chambers, these muons could easily be seen even by the naked eye.

 

 Read More HERE.....



Reactions

Post a Comment

0 Comments